2. Конспект лекций (рекомендации к теоретической части)

ВЕКТОРНАЯ АЛГЕБРА

Лекция№1

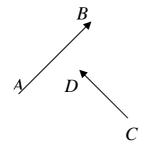
Тема: Направленный отрезок. Вектор. Основные отношения векторов

План лекции

- 1. Направленный отрезок.
- 2. Понятие вектора, его длины и направления. Основные отношения векторов: коллинеарность, одинаковая и противоположная направленность, равенство.
- 3. Основные отношения векторов.

Направленный отрезок

1. Отрезок называется *направленным*, если принимается во внимание порядок, в котором заданы его концы. Пусть задан отрезок с концами в точках A и B. Если A — первая точка, а B - вторая, то точка A называется *началом*, а B — *концом* этого направленного отрезка; его обозначают так: \overline{AB} . На рисунке направленный отрезок отмечается стрелкой, обращенной к его концу. Так, на рисунке 1 изображены отрезки \overline{AB} и \overline{CD} .



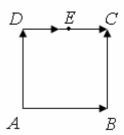


Рис. 1. Рис. 2.

В целях общности удобнее рассматривать каждую точку A как частный случай направленного отрезка (начало и конец которого совпадают). Его называют *нулевым направленным отрезком* и обозначают так: \overline{AA} . Длиной ненулевого направленного отрезка \overline{AB} называется длина отрезка \overline{AB} . Длина направленного отрезка \overline{AB} обозначается символом $\overline{|AB|}$ или просто AB. Длина нулевого направленного отрезка считается равной нулю.

Пусть A и B — две точки. Если рассматриваются обычные (ненаправленные) отрезки, то AB и BA — один и тот же отрезок (одно и тоже множество точек). Если же рассматриваются направленные отрезки, то \overline{AB} и \overline{BA} — разные отрезки. Каждый из отрезков \overline{AB} и \overline{BA} называются *противоположным* другому. Если \overline{AA} — нулевой направленный отрезок, то противоположным ему считается тот же отрезок \overline{AA} .

Ненулевые отрезки AB и CD называются одинаково (противоположно) направленными, если одинаково (противоположно) направлены лучи AB и CD. Нулевой направленный отрезок считается одинаково направленным с любым направленным отрезком.

Ненулевой отрезок AB определяет направление, а именно то направление, которому принадлежит луч AB . Нулевой отрезок \overline{AA} не определяет никакого направления.

2. Отрезки \overline{AB} и \overline{CD} называются эквиполлентными, если они одинаково направлены и имеют равные длины (пишут $\overline{AB} = \overline{CD}$).

На рисунке 2 изображен квадрат ABCD. Отрезки \overline{AB} и \overline{DC} эквиполлентны, так как они одинаково направлены и их длины равны. Отрезки \overline{AD} и \overline{BC} также эквиполлентны. Отрезки \overline{AB} и \overline{AD} не эквиполлентны, (их длины равны, но направления различны), точ-

но так же не эквиполлентны отрезки \overline{AB} и \overline{DE} (они одинаково направлены, но их длины различные). Ясно, что любые два нулевых направленных отрезка эквиполлентны.

Направленные отрезки AB и CD эквиполлентны тогда и только тогда, когда середины отрезков AD и BC совпадают.

Заметим, что отношение эквиполлентности удовлетворяет трем условиям:

- $1.\overline{AB} = \overline{AB}$ для любого направленного отрезка \overline{AB} (рефлексивность).
- 2. $\overline{AB} = \overline{CD} \Rightarrow \overline{CD} = \overline{AB}$ (симметричность).
- 3. $(\overline{AB} \stackrel{\circ}{=} \overline{CD})$ и $\overline{CD} \stackrel{\circ}{=} \overline{EF}) \Rightarrow \overline{AB} \stackrel{\circ}{=} \overline{EF}$ (транзитивность).

Следовательно, это отношение является отношением эквивалентности на множестве всех направленных отрезков пространства.

Понятие вектора, его длины и направления. Основные отношения векторов

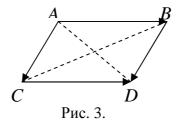
1.Пусть W — множество всех направленных отрезков пространства. Отношение эквиполлентности, заданное в этом множестве, является отношением эквивалентности. Каждый класс эквивалентности этого отношения называется вектором (или свободным вектором). Итак, вектор — это элемент фактор-мнажества $V = W \mid_{\omega}$. Векторы обозначаются одной буквой, над которой ставится стрелка: \vec{a}, \vec{b} , ..., или одной буквой полужирного шрифта: **a, b, c, ...,** .Таким образом, вектор — это множество всех направленных отрезков, любые два из которых эквиполлентны. Если хотя бы один из направленных отрезков этого множества нулевой, то все направленные отрезки множества нулевые. В этом случае вектор называется нулевым или нуль-вектором и обозначается через $\vec{0}$.

Пусть \vec{a} - данный вектор, т.е. класс эквивалентности отношения $\stackrel{\omega}{=}$. Если \overline{AB} - представитель этого класса, то \overline{AB} определяется весь класс эквивалентности, т.е. вектор \vec{a} . В этом случае вектор \vec{a} обозначается через \overline{AB} и на рисунке изображается в виде направленного отрезка \overline{AB} .

Заметим, что запись $\vec{a}=\vec{b}$ (читается: «вектор \vec{a} равен вектору \vec{b}) означает, что множество \vec{a} совпадает с множеством \vec{b} , т.е. \vec{a} и \vec{b} - один и тоже вектор, но по-разному обозначенный. В частности, запись $\overrightarrow{AB}=\overrightarrow{CD}$ означает, что \overrightarrow{AB} и \overrightarrow{CD} - один и тот же вектор (т. е. что отрезки \overrightarrow{AB} и \overrightarrow{CD} эквиполлентны). Имеет место следующая лемма о равенстве векторов.

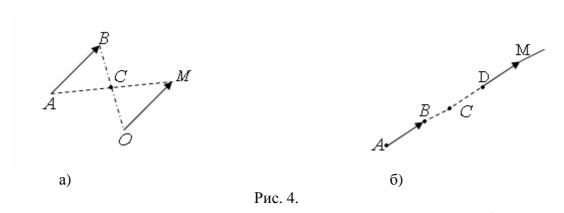
$$\overrightarrow{AB} = \overrightarrow{CD}$$
, то $\overrightarrow{AC} = \overrightarrow{BD}$.

Доказательство. По условию леммы $\overrightarrow{AB} = \overrightarrow{CD}$, поэтому $\overrightarrow{AB} = \overrightarrow{CD}$. По признаку эквиполлентности направленных отрезков середины отрезков AD и CB совпадают (рис. 3).



Рассмотрим отрезки \overline{AC} и \overline{BD} . Так как середины отрезков AD и CB совпадают, то $\overline{AC} = \overline{BD}$, следовательно, $\overrightarrow{AC} = \overline{BD}$.

2. Пусть \vec{a} - произвольный вектор, а O - некоторая точка пространства. Докажем, что существует одна и только одна точка M mакая, что $\overrightarrow{OM} = \vec{a}$. Действительно, допустим, что $\overrightarrow{AB} \in \vec{a}$. Рассмотрим середину C отрезка OB (этот отрезок может быть и нулевым) и возьмем точку M, симметричную точке A относительно точки C (рис. 4, a, б).



По признаку эквиполлентности двух направленных отрезков $\overrightarrow{OM} = \overrightarrow{AB}$, поэтому $\overrightarrow{OM} = \overrightarrow{a}$. Построение точки M условимся называть откладыванием вектора \overrightarrow{a} от точки O.

3. Говорят, что вектор \vec{a} параллелен прямой d, если любой его представитель параллелен этой прямой или лежит на ней. Нулевой вектор считается параллельным любой прямой. Очевидно, если вектор \vec{a} параллелен прямой d, то он параллелен любой прямой, параллельной прямой d.

Векторы \vec{a} и \vec{b} называются коллинеарными, если существует прямая, которой они параллельны. Отметим, что если из двух векторов по крайней мере один нулевой, то эти векторы коллинеарны. Здесь $\vec{a} \parallel \vec{b}$ означает, что векторы \vec{a} и \vec{b} коллинеарны. На рисунке 5 $\overrightarrow{AB} \parallel \overrightarrow{CD}$, $\overrightarrow{AB} \parallel \overrightarrow{GH}$. На этом же рисунке векторы \overrightarrow{MN} и \overrightarrow{GH} не коллинеарны.

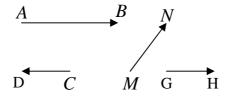


Рис. 5.

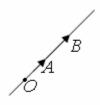


Рис. 6.

Замечание. Пусть \vec{a} и \vec{b} - коллинеарные векторы. Отложим эти векторы от произвольной точки O пространства: $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. Отрезки \overrightarrow{OA} и \overrightarrow{OB} (рис. 6) имеют об-

щее начало, и в силу коллинеарности векторов \vec{a} и \vec{b} они лежат на одной прямой линии. Это свойство поясняет термин «коллинеарные векторы».

4. Пусть \vec{a} и \vec{b} - коллинеарные векторы, а \overline{AB} и \overline{CD} - какие-то представители этих векторов: $\overline{AB} \in \vec{a}$, $\overline{CD} \in \vec{b}$. По определению коллинеарности векторов отрезки \overline{AB} и \overline{CD} параллельны или лежат на одной прямой. Векторы \vec{a} и \vec{b} называются одинаково направленными , если одинаково направлены отрезки \overline{AB} и \overline{CD} (рис.7,а), и противоположно направленными, если противоположено направлены эти отрезки (рис. 7,б). Ясно, что свойство двух векторов быть одинаково (противоположно) направленными не зависит от выбора представителей этих векторов.

Запись $\vec{a} \uparrow \uparrow \vec{b}$ будет означать, что векторы \vec{a} и \vec{b} одинаково направлены, а запись $\vec{a} \uparrow \downarrow \vec{b}$ - что эти векторы противоположено направлены. На рисунке 5 $\overline{AB} \uparrow \uparrow \overline{GH}$. На рисунке 6 $\overline{OA} \uparrow \uparrow \overline{OB}$. Так как нулевой направленный отрезок одинаково направлен с любым направленным отрезком, то $\vec{0} \uparrow \uparrow \vec{a}$, где \vec{a} - произвольный вектор.

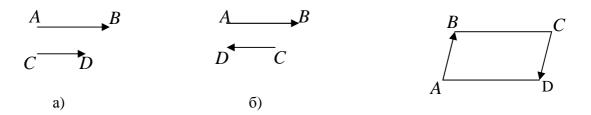


Рис. 7. Рис. 8.

5. Рассмотрим произвольный вектор \vec{a} и от какой — нибудь точки A отложим вектор $\overrightarrow{AB} = \vec{a}$. Вектор \overrightarrow{BA} называется вектором, противоположным вектору \vec{a} , и обозначается через $(-\vec{a})$. На рисунке 8 изображен параллелограмм ABCD. Вектор \overrightarrow{CD} является вектором, противоположным вектору \overrightarrow{AB} , так как $\overrightarrow{CD} = \overrightarrow{BA}$. Вектором, противоположным вектору \overrightarrow{BA} , является \overrightarrow{AB} , поэтому $-(-\vec{a}) = \vec{a}$. Вектором, противоположным нуль-вектору, является нуль-вектор.

6. Длиной вектора называется длина любого представителя этого вектора. Длина нулевого вектора равна нулю. Длины векторов $\vec{a}, \vec{b}, \overrightarrow{AB}$ обозначаются так: $|\vec{a}|, |\vec{b}|, |\overrightarrow{AB}|$.

Вектор называется единичным, если его длина равна единице.

Замечание. В математике и ее приложениях (механике, физике и т. д.), кроме свободных векторов, используются и так называемые скользящие и связанные векторы.

Скользящий вектор — это множество одинаково направленных отрезков прямой, имеющих равные длины. Таким вектором можно представить силу, приложенную к абсолютно твердому телу.

Связанный вектор — это направленный отрезок. Если AB и CD-связанные векторы, то $\overrightarrow{AB} = \overrightarrow{CD}$ тогда и только тогда , когда совпадают точки A и C, а также точки B и D. Связанным вектором представляют, например, вектор скорости частиц жидкости, движущейся с завихрениями; здесь каждая частица имеет свой вектор скорости для соседней частицы.

В настоящем курсе геометрии применяются только свободные векторы, которые будем называть векторами, опуская для краткости слово «свободный».