Лекция № 13, 14

Тема: Элементы комбинаторики

- План: 1) Понятие комбинаторной задачи
 - 2) Правило суммы и произведения
 - 3) Размещения с повторениями и без повторений
 - 4) Перестановки без повторений и с повторениями
 - 5) Сочетания без повторений

Понятие комбинаторной задачи

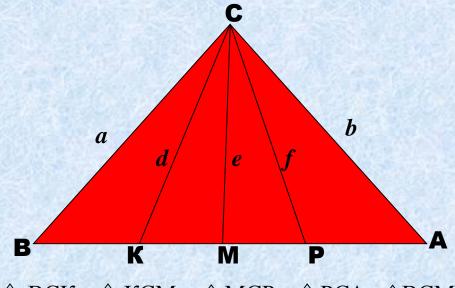
Комбинаторные задачи- задачи, требующие перебора всех возможных вариантов и подсчёта их числа

Комбинаторика - раздел математики, в котором изучают комбинаторные задачи (часть теории конечных множеств).

Возникла в XVI веке в связи с азартными играми

Примеры комбинаторных задач в курсе математики начальных классов

1) Сколько треугольников?



 \triangle BCK, \triangle KCM, \triangle MCP, \triangle PCA, \triangle BCM, \triangle KCP, \triangle MCA, \triangle BCP, \triangle KCA, \triangle BCA

Треугольников столько, сколько пар можно составить из букв a, b, d, e, f (наклонные отрезки)

2) Магический квадрат

(все суммы по строкам, столбцам и диагоналям должны равняться одному и тому же числу)

4	9	2
3	5	7
8	1	6

$$n = 3$$

Уровни решения комбинаторных задач:

Начальный (первый) — поиск хотя бы одного расположения объектов, обладающего заданными свойствами

Второй – подсчёт и описание числа всех решений данной задачи

Третий — нахождение оптимальных решений среди всех возможных, которые превосходят другие решения по тем или иным показателям

Правило суммы

Если объект а можно выбрать т способами, а объект в - к способами (не такими, как а), то выбор «либо а, либо в» можно осуществить т + к способами

$$n(A \cup B) = n(A) + n(B), \quad A \cap B = \emptyset$$

Пример. На тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать один плод?

Решение. «Яблоко» - 5 способов

«Апельсин» - 4 способа

Выбор «либо яблоко, либо апельсин» - 5 + 4 = 9 способов

Правило произведения

Если объект а можно выбрать т способами, а объект в - k способами, то пару (a;в) можно выбрать т • k способами

$$n(A \times B) = n(A) \cdot n(B)$$

Пример. На тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать пару плодов, состоящую из яблока и апельсина?

Решение. «Яблоко» - 5 способов

«Апельсин» - 4 способа

Выбор пары (яблоко, апельсин) - 5 • 4 = 20 способов

Размещения с повторениями

Двузначные числа, образованные из цифр 7, 4 и 5:

<u>77</u>, 74, 75, 47, <u>44</u>, 45, 57, 54, <u>55</u> — цифры повторяются

Двузначное число – это кортеж длины 2

Размещение с повторениями из **k** элементов по **m** элементов — это кортеж, составленный из **m** элементов **k**-элементного множества

74 и 75 — отличаются составом элементов

74 и 47 - отличаются порядком расположения элементов

Формула числа всевозможных размещений с повторениями

$$\tilde{A}_{k}^{M} = k^{M}$$

Количество двухзначных чисел, образованных из цифр 7, 4 и 5 — это число размещений с повторениями из трех элементов по 2

$$\tilde{A}_{3}^{2} = 3^{2} = 9$$

Размещения без повторений

6 двузначных чисел

Размещение без повторений из k элементов по т элементов — это кортеж, составленный из т неповторяющихся элементов множества, в котором k элементов

Формула числа всевозможных размещений без повторений

$$A_k^M = k \cdot (k-1) \cdot ... \cdot (k-M+1) = \frac{k!}{(k-M)!}$$

$$A_3^2 = 3 \cdot (3 - 1) = 6$$

Факториал

 ${\bf k!}$ « ${\bf k}$ факториал» - произведение всех натуральных чисел от ${\bf 1}$ до ${\bf k}$ включительно

$$0! = 1$$
 $1! = 1$
 $2! = 1 \cdot 2 = 2$
 $3! = 1 \cdot 2 \cdot 3 = 6$
 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 3! \cdot 4 = 24$

$$\mathbf{n!} = (\mathbf{n-1})! \cdot \mathbf{n}$$

3!

Перестановки без повторений

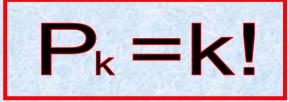
Сколько различных трехзначных чисел можно составить из цифр 7, 4, и 5, чтобы числа в записи числа не повторялись?

745, 754, 475, 457, 547, 574 — перестановка цифр

$$A_3^3 = 3 \cdot (3-1) \cdot (3-2) = 6$$

Перестановки из **k** элементов **без повторений** – это размещения из **k** элементов по **k** элементов

Формула числа перестановок без повторений



Перестановки с повторениями

Задача. Сколькими способами можно расставить на первой линии шахматной доски 6 белых пешек и 2 чёрных?

1)	ччбббббб	8) бччббббб	15) ббчбчббб	22)бббчбббч
2)	чбчббббб	9) бчбчбббб	16) ббчббчбб	23) ббббччбб
3)	чббчбббб	10) бчббчббб	17) ббчбббчб	24) ббббчбчб
4)	чбббчббб	11) бчбббчбб	18) ббчббббч	25) ббббчббч
5)	чббббчбб	12) бчббббчб	19) бббччббб	26) бббббччб
6)	чббббббчб	13) бчбббббч	20) ნნნчნчნნ	27) бббббчбч
7)	чбббббббч	14) ббччбббб	21) ნნნчნნчნ	28) ббббббчч

Возможные способы расстановки (кортежи)

Их 28.

Кортежи длины **m**, в которые элемент **Q**1 входит **m**1 раз, элемент **Q**2 - **m**2 раз, ..., элемент **Q**k - **m**k раз (m1 + m2 + ... + mk = m), называют **перестановками** с **повторениями** состава (m1, m2, ..., mk).

Пример: кортеж (в, а, в, в, с, а) является перестановкой с повторениями состава (3, 2, 1)

Формула числа перестановок с повторениями

$$P(m_1, m_2,..., m_k) = \frac{(m_1+m_2+...+m_k)!}{m_1! \cdot m_2! \cdot ... \cdot m_k!}$$

Решение задачи:
$$P(6, 2) = \frac{(6+2)!}{6! \cdot 2!} = 28$$

Сочетания без повторений

Задача. Сколькими способами может выбрать Маша 2 ленты из трёх лент разных цветов: красной, синей и жёлтой.

Возможные варианты:

Ответ: 3 способа.

Сочетание без повторений из k элементов по m элементов — это m-элементное подмножество множества, содержащего k элементов

Формула числа сочетаний без повторений

$$C_k^{\scriptscriptstyle K} = \frac{A_k^{\scriptscriptstyle M}}{P_k} = \frac{k!}{M! \ (k-M)!}$$

Решение задачи:
$$C_3^2 = \frac{3!}{2!(3-2)!} = 3$$

Комбинаторные задачи в начальном курсе математики

Решаются методом перебора возможных вариантов: графы, таблицы, схема «дерево возможных вариантов»

1) Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры могут повторяться?

2) В четверг в первом классе должно быть четыре урока: письмо, чтение, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?